INTERACTIVE CONTROL OF LARGE-SCALE SIMULATIONS

Richard E. Ewing Institute for Scientific Computation Texas A&M University

Robert C. Sharpley Industrial Mathematics Institute University of South Carolina

LEAKY UNDERGROUND STORAGE TANKS

NEED TO DEVELOP MONITORING AND CLEAN UP METHODS

MODELING PROCESS

NEED FOR SIMULATION

Develop Better Understanding of Nonlinear Behavior

 Computational Laboratory
 Experiments
 Understand Sensitivities of Parameters
 Isolate Phenomena then Combine

 Scale- Up Information and Understanding

 Pore
 Laboratory
 Field

 Obtain Bounding Calculations
 Develop Predictive Capabilities

 Optimization and Control

TRANSPORT IN POROUS MEDIA

PHYSICAL RELATIONS: CONSTITUTIVE LAW (D' ARCY) $u = -T\nabla\Phi$ CONSERVATION OF MASS $-\operatorname{div} u = \frac{\partial}{\partial t}(\phi S(\Phi)) + q$

COMPONENT BALANCES

 $\frac{\partial}{\partial t}(\phi f_1(c)) + \operatorname{div}(u f_2(c)) = \nabla \bullet (D\nabla c) + q(c)$

EQUATIONS OF STATE THERMAL BALANCE

TRANSPORT IN POROUS MEDIA (CONTINUED)

 \diamond ϕ , T, S, f₁, f₂, D Are Usually Unknown - PARAMETER ESTIMATION / INVERSE PROBLEMS PARAMETERS ARE HETEROGENEOUS AT VARIOUS LENGTHS - Need Effective Parameters / Equations Need Accurate Fluid Velocities - MIXED FINITE ELEMENT METHODS Importance of Transport - EULERIAN - LAGRANGIAN METHODS Coupled Nonlinear Systems - EFFECTIVE LINEARIZATION / SOLUTION METHODS

TWO-PHASE FLOW

D' ARCY' S LAW:

$$u_{i} = -\frac{Kk_{i}}{\mu_{i}} (\nabla p_{i} - \rho_{i}g\nabla z) , i = w, n$$
$$\frac{\partial}{\partial t} (\phi \rho_{i}S_{i}) + \nabla \bullet (\rho_{i}u_{i}) = q_{i}\rho_{i} , i = w, n$$

MASS BALANCE:

$$p_{c_{n,w}} = p_n - p_w$$
, $S_n + S_w = 1$

w = Wetting Phase n = Nonwetting Phase

IDENTIFICATION (INVERSE) PROBLEM

DETERMINE SUITABLE MATHEMATICAL MODEL
 ESTIMATE PARAMETERS WITHIN MATHEMATICAL MODEL

IDENTIFICATION (INVERSE) PROBLEM

DETERMINE SUITABLE MATHEMATICAL MODEL
 ESTIMATE PARAMETERS WITHIN MATHEMATICAL MODEL

LARGE SCALE INTERACTIVE APPLICATIONS ON REMOTE SUPERCOMPUTERS

Model Development and Formulation

- Coupled Flow and Transport Codes with Complex Boundary Conditions
- Numerical Discretization and Parallel Algorithm Development
- MPP Code Development
- Field Testing and Production Runs
- User Environments and Visualization Tools

Need for Interactive tracking and steering

PRIMARY RESEARCH TEAM

Texas A&M

Richard Ewing
Steve Johnson
Hao Lu
Joseph Pasciak

- South Carolina
 - Robert Sharpley
 - Ronald DeVore
 - L. Scott Johnson

SAVANNAH RIVER SITE

 Difficult topography
 Highly Heterogeneous Soils
 Saturated and Unsaturated Flows
 Reactions with disparate time scale
 Transient/Mixed Boundary Conditions

G3D - GRAPHICS FRONT-END

Software Engineering Motif with OpenGL / MESA rendering areas Self-Interrupting Work Stack 3D Pre-processing Data set construction – GIS Import of Field Data Data Verification Post-processing Data Verification Model and Algorithm Verification Controller library coupling

GRAPHICS PRE-PROCESSING

3D grid creation and editing

Material properties

- Initial conditions
- Time dependent boundary conditions
- Multiple views

GRAPHICS POST-PROCESSING

Multiple vector/scalar fields
Time animation
Multiple slices/lso-surfaces
Stereo rendering, lighting models
Overlay images for orientation
Volume rendering

Hierarchical Representations

CONTROLLER LIBRARY

User callable
Client - Server

server MPP - client workstations

Non-interrupt approach
Controller - "Graphics" Node

processes client requests and performs scale analysis/compression

MPI Message passing
Remote procedure calls

COMPRESSION MODULE FOR ENCODED TRANSMISSION OVER CONGESTED NETWORKS

Wavelet based processing

- Fast decomposition/reconstruct
- Nonlinear approximation in various metrics
- Compression
- Feature identification at various scales
- Scale up/scale down
- Progressive transmission
 - Lossy to lossless
 - Adaptive local spatial resolution
- Scattered data assimilation and denoising

INTERACTIVE CONTROL OF LARGE-SCALE SIMULATIONS

Richard E. Ewing Institute for Scientific Computation Texas A&M University

Robert C. Sharpley Industrial Mathematics Institute University of South Carolina