New Directions in Model Based Data Assimilation

Gregory J. McRae MIT Chemical Engineering Course 10

Outline of Presentation

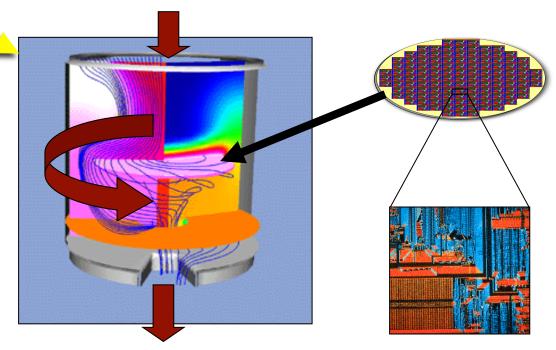
- Introduction to data assimilation
- Decision making in the presence of uncertainty
- Challenges and new opportunities
 - Algorithms for uncertainty propagation
 - Data architectures and management
 - Standards for data exchange
 - Need for an interdisciplinary approach
- Future directions and conclusions

There is a critical need for a new approach to merging models / data

What is the Chemical Industry?

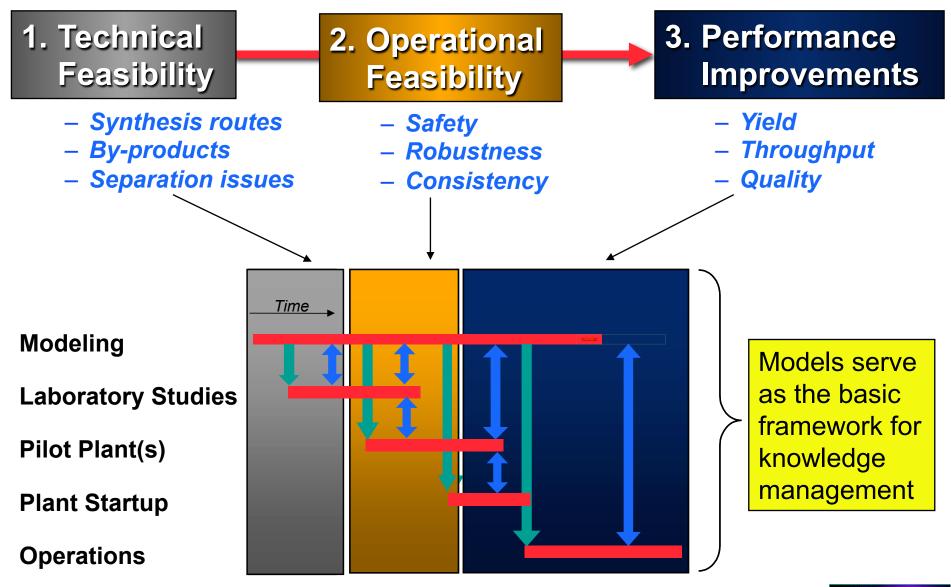
Traditional Processes

Semiconductor Manufacturing



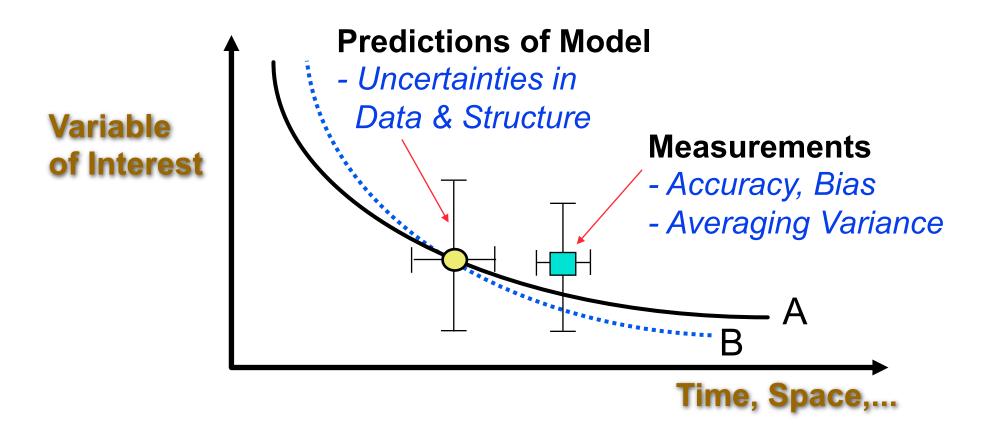
"...Chemistry is the <u>important</u> and <u>common</u> ingredient..."

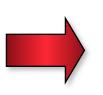
Models are Crucial in Chemical Engineering



MIT Chemical Engineering

Data Need: Model Verification / Discrimination





Meaningful comparisons requires estimates of uncertainties in prediction <u>and</u> observations

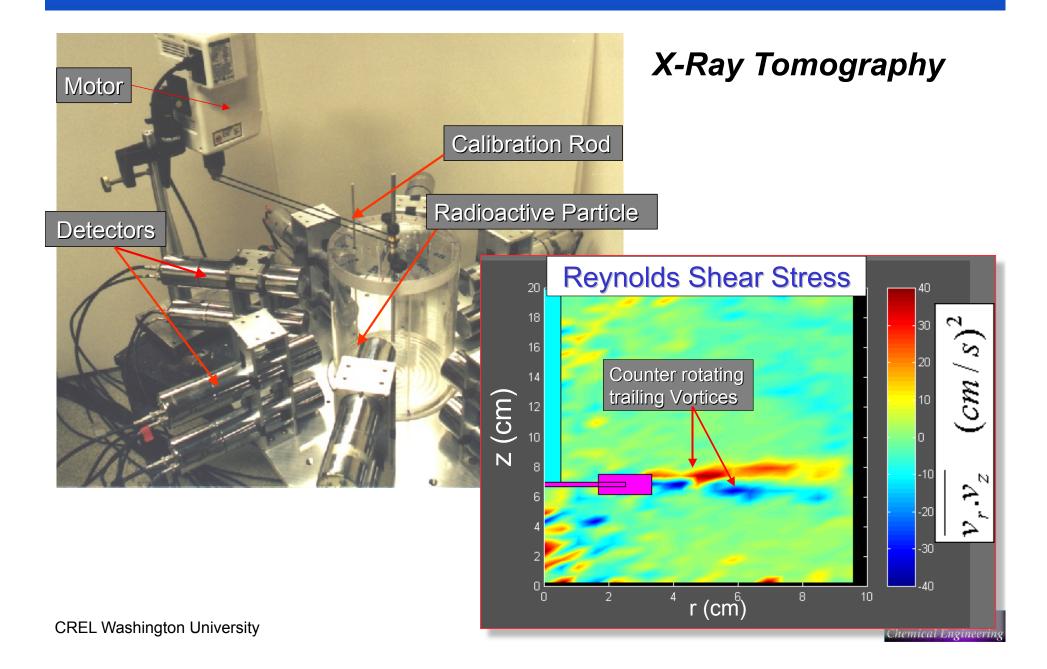
MIT

Chemical Engineering

Other Dimensions of the Need for Data

- Model discrimination Model A vs. B
- Hypothesis testing Which parameter is "best"
- Model verification What are the "stopping" rules
- Experimental design Where to measure
- Optimization objectives Fail-Safe vs. Safe-Fail
- Resource allocation *Where to spend the money*
- etc.

High Bandwidth Data Assimilation -- Mixing



Measurements are Vital – Historical View

"...When you can <u>measure</u> what you are speaking about, and express it in numbers, you know something about it; but when you cannot ... your knowledge is of a meager and unsatisfactory kind: it may be the beginning of knowledge, but you have scarcely in your thoughts, advanced the state of science..."

William Thompson, Lord Kelvin

SUCCESS WILL DEPEND ON:

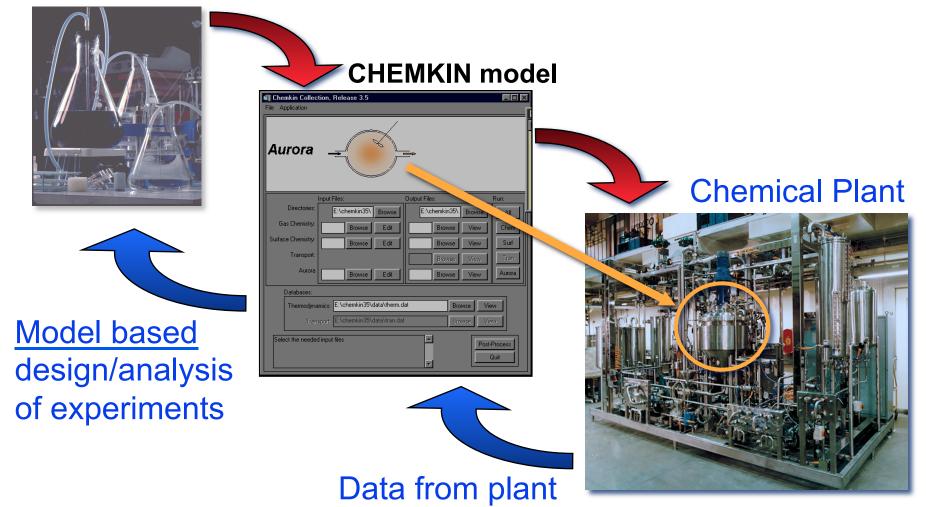
1. NEW ALGORITHMS THAT CAN TACKLE NONLINEAR, COMPLEX AND LARGE-SCALE PROBLEMS

Opportunities for New Algorithms/Theory

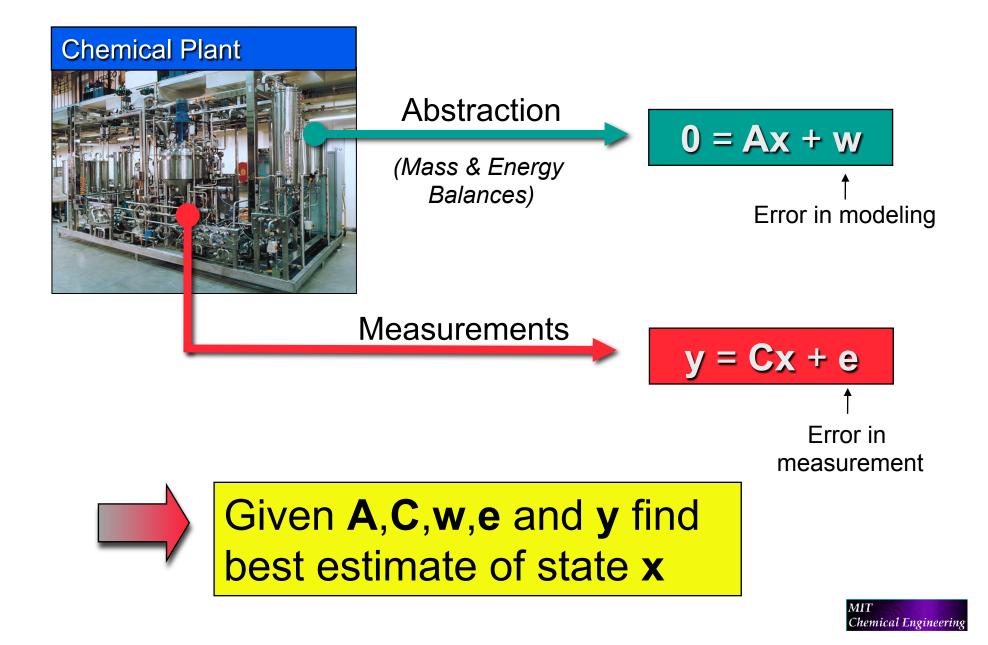
- Statistics (<u>Bayesian</u> based approaches)
 - Model discrimination
 - Experimental design
 - Parameter and state estimation for ODE/ PDE's
- Numerical Algorithms
 - Inverse problems for DAE/PDE's
 - Data assimilation of n-dimensional data
 - Solution of large scale optimization problems
 - Uncertainty propagation
 - Multiscale integration
- Data analysis and visualization

Overall Goal – From Bench to Plant Scales

Laboratory Experiment



A Simple Example – Linear Balance Equations



Solution to State Estimation Problem

1 Set up the constrained optimization problem (<u>No model error</u>)

$$\underbrace{\min_{\mathbf{x}}}_{\mathbf{x}} \quad (\mathbf{y} - \mathbf{C}\mathbf{x})^T \mathbf{W}^{-1} (\mathbf{y} - \mathbf{C}\mathbf{x})$$
s.t. $\mathbf{A}\mathbf{x} = \mathbf{0}$

2 Solve for the estimates of the state

$$\hat{\mathbf{x}} = \hat{\mathbf{x}}_{\mathbf{0}} - (\mathbf{C}^T \mathbf{W}^{-1} \mathbf{C})^{-1} \mathbf{A}^T [\mathbf{A} (\mathbf{C}^T \mathbf{W}^{-1} \mathbf{C})^{-1} \mathbf{A}^T]^{-1} \mathbf{A} \hat{\mathbf{x}}_{\mathbf{0}}$$

 $\hat{\mathbf{x}}_{\mathbf{0}} = (\mathbf{C}^T \mathbf{W}^{-1} \mathbf{C})^{-1} \mathbf{C}^T \mathbf{W}^{-1} \mathbf{y}$ (OLS – No constraint)

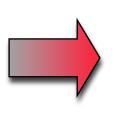
3 Determine the variance in the estimates

$$\mathbf{V} = \mathbf{V}_{\mathbf{0}} - (\mathbf{C}^T \mathbf{W}^{-1} \mathbf{C})^{-1} \mathbf{A}^T [\mathbf{A} (\mathbf{C}^T \mathbf{W}^{-1} \mathbf{C})^{-1} \mathbf{A}^T]^{-1} \mathbf{A} (\mathbf{C}^T \mathbf{W}^{-1} \mathbf{C})^{-1}$$

The use of model-based constraints reduces variance in estimates ... BUT

Assumptions underlying Solution

- 1. Model is linear
- 2. Normally distributed errors in data and solution
- 3. Data are uncorrelated in time
- 4. <u>No errors in the model of the process!</u>!
- 5. Etc.



There is a critical need for a more realistic approach that deals with model uncertainty

Simple Problem: Kinetics of $SiH_4 \rightarrow (Si) + 2H_2$

Model

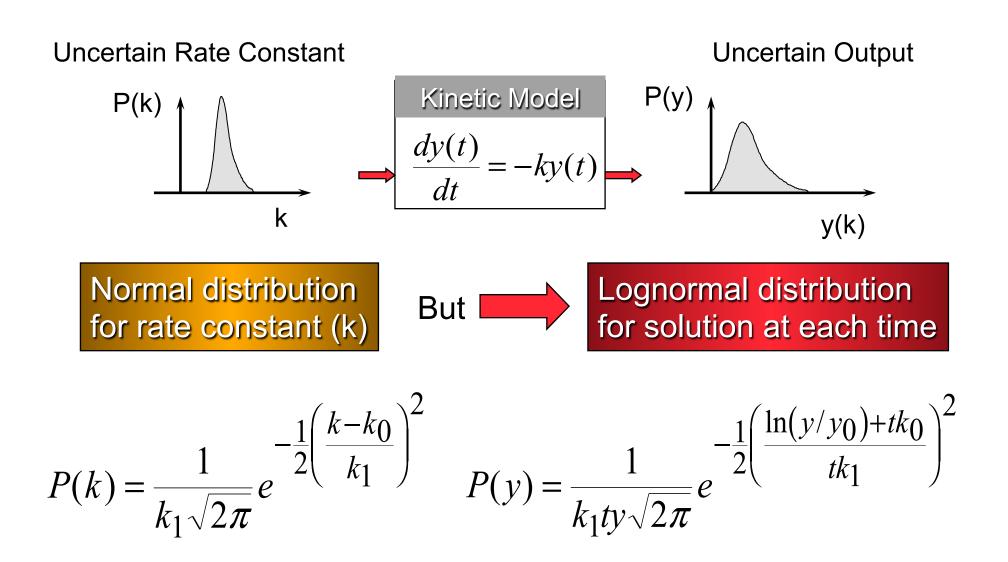
$$\frac{dy(t)}{dt} = -k \ y(t) \quad ; \ y(0) = y_0, \qquad y(t) = [SiH_4(t)]$$
Solution

$$y(t) = y_0 e^{-kt}$$
Sensitivity to parameter variations

 $S = \frac{\partial y(t)}{\partial k} \bigg|_{\overline{k}} = -t y_0 e^{-\overline{k} t}$

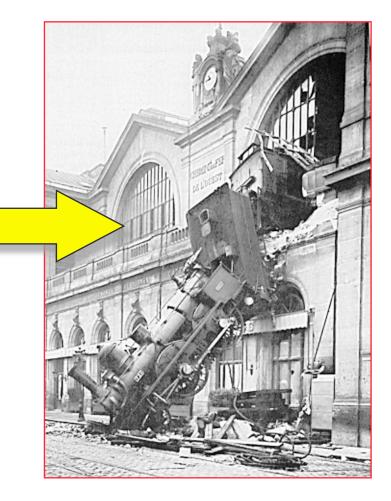
But, what if k is uncertain?

Solution in Presence of Uncertainty

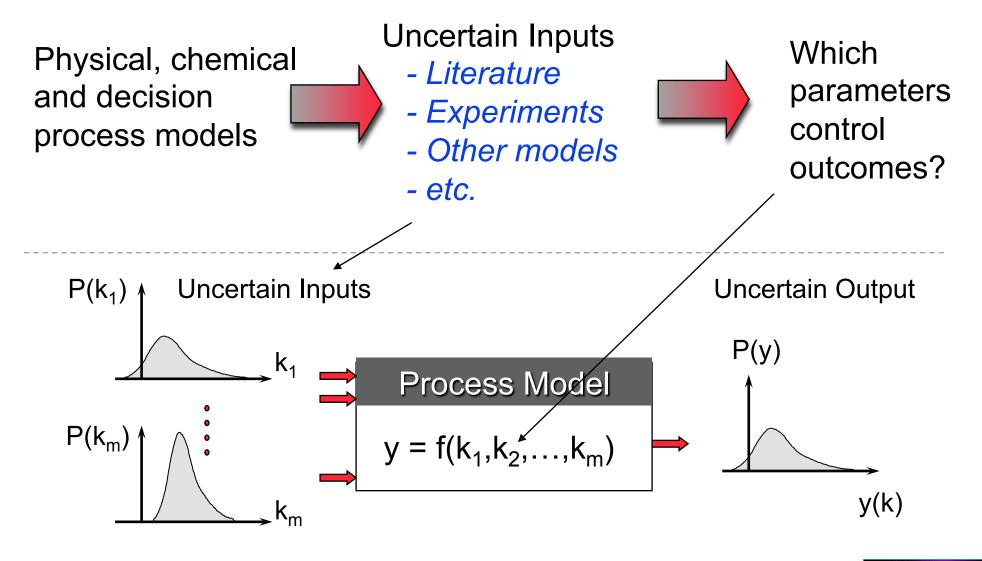


Key Message – Outcomes are Important

"... While there are always lots of uncertainties, the key challenge in engineering is to find those problem components that contribute most to uncertainties in <u>outcomes...</u>"

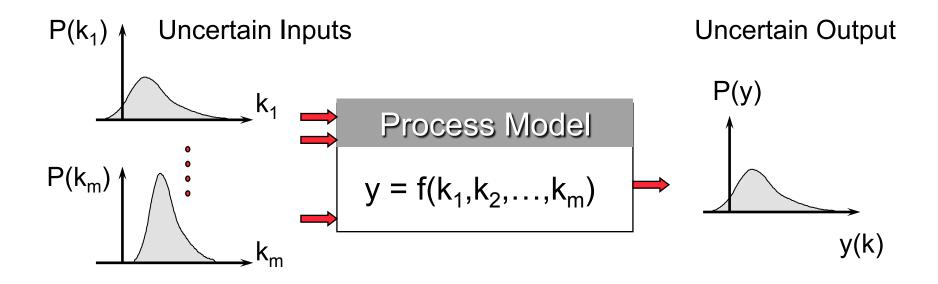


Example: Where to Allocate Resources



MIT Chemical Engineering

How do Uncertain Inputs effect the Outputs?



Measures of Uncertainty (Expected value, variance, pdf, etc.)

e.g.
$$E[y(k)] = \int_{y} y(k) P[y(k)] dy(k)$$

 $\equiv \int \cdots \int y(k) P[k] dk_1 \cdots dk_m$
 $\int \ldots Multi-dimensional integrals are computationally very expensive$

MIT Chemical Engineering

Attributes of an Uncertainty Analysis System

- Compatible with existing modeling systems
- At least <u>four orders of magnitude faster</u> than Monte Carlo
- An ability to get the probability density function of outputs
- Be able to identify the key contributions to uncertainties in outcomes

"...By rethinking conventional methods and directly embedding uncertainty into the modeling process itself..."

Incorporating Uncertainty at the Beginning

Fourier Series Representation of f(x)

$$f(x) = a_0 + \sum_{i=1}^{\infty} a_i \sin(\omega_i x) + b_i \cos(\omega_i x)$$

What happens if x is a random variable?

Polynomial Chaos Representation of f(w) (Wiener, 1947)

$$f(\omega) = \sum_{i=1}^{\infty} a_i H_i[\xi_1(\omega), \dots, \zeta_m(\omega)]$$

$$\stackrel{\leftarrow}{=} \text{Known probability distributions} (e.g. unit Normal N[0,1])$$
expansion
$$\stackrel{\leftarrow}{=} \text{Eulermite Delynamial}$$

Functional (e.g. Hermite Polynomial)

Curse of Dimensionality

Ν

Measures of Uncertainty (*expected value, variance, etc.*)

Definition

$$E\{y(\theta)\} = \int_{-\infty}^{\infty} y(\theta) f_{y(\theta)}(y(\theta)) dy(\theta)$$

$$f_{y(\underline{w})}(y(\underline{w})) unknown$$
Statistically equivalent integral definition

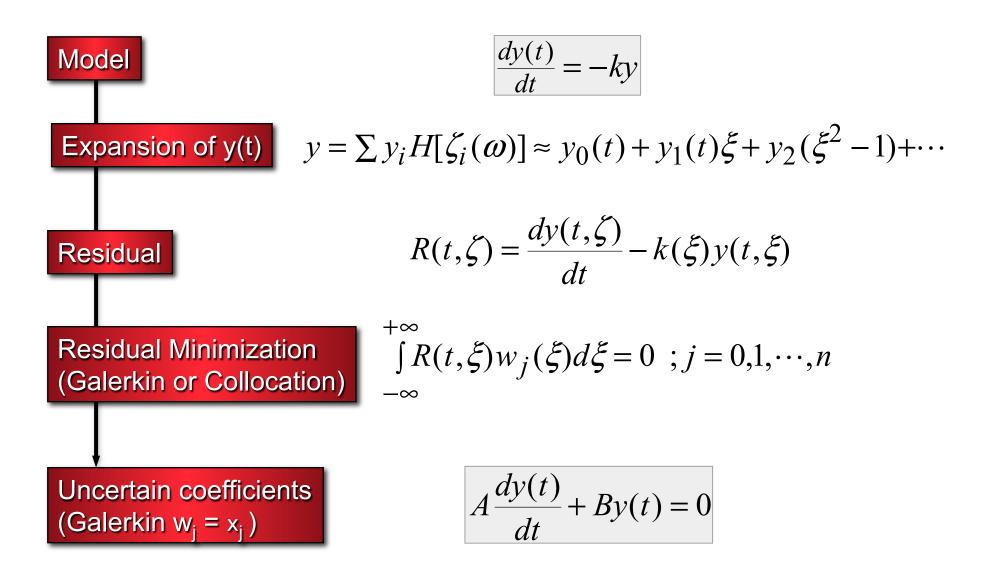
$$E\{y(\theta)\} = \int \cdots \int y(\theta) f_{\theta}(\theta) d\theta_1 \cdots d\theta_n$$
Multi-dimensional integrals are computationally very expensive
Projection into 1-D by orthogonal polynomials

$$\theta_i = \sum_j a_{ij} H_j(\underline{\xi}(\omega))$$
Polynomial chaos expansion
New definition (one-dimensional integrals)

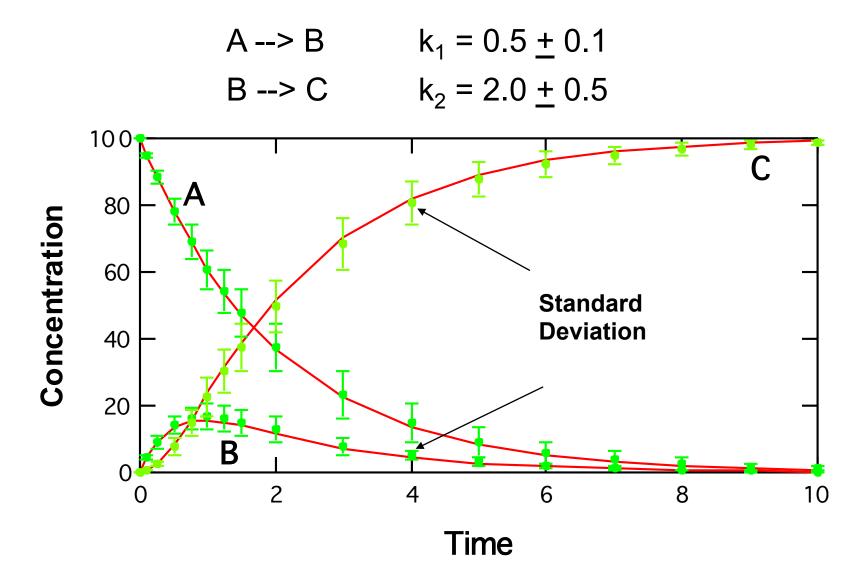
$$E\{y(\theta)\} = \sum_j c_j \int y_j(\xi_1) f_{\xi_1}(\xi_1) d\xi_1 \cdots \int y_j(\xi_n) f_{\xi_n}(\xi_n) d\xi_n^2$$

MIT Chemical Engineering

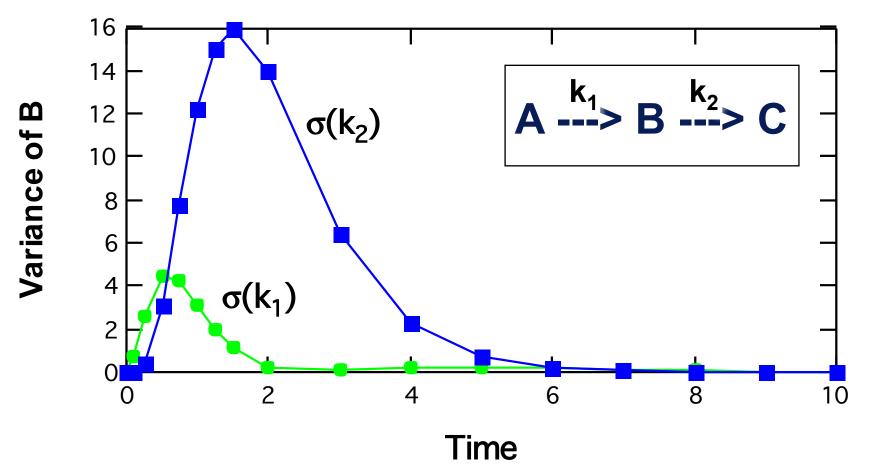
Example of Uncertainty Analysis



Simple Reaction Sequence $A \rightarrow B \rightarrow C$

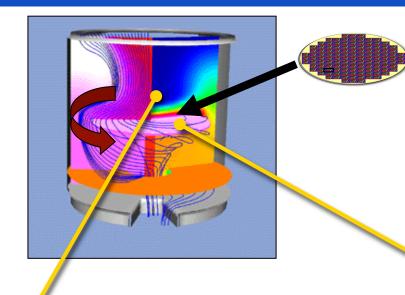


Effect of Parameter Uncertainty on Variance



MIT Chemical Engineering

AMAT Centura Chemical Vapor Deposition Reactor



Gas Phase Reactions

 $\begin{array}{c} \operatorname{SiCl_3H} \boxtimes \operatorname{HCl} + \operatorname{SiCl_2} \\ \operatorname{SiCl_2H_2} \boxtimes \operatorname{SiCl_2} + \operatorname{H_2} \\ \operatorname{SiCl_2H_2} \boxtimes \operatorname{HSiCl} + \operatorname{HCl} \\ \operatorname{H_2ClSiSiCl_3} \boxtimes \operatorname{SiCl_4} + \operatorname{SiH_2} \\ \operatorname{H_2ClSiSiCl_3} \boxtimes \operatorname{SiCl_3H} + \operatorname{HSiCl} \\ \operatorname{H_2ClSiSiCl_3} \boxtimes \operatorname{SiCl_2H_2} + \operatorname{SiCl_2} \\ \operatorname{Si_2Cl_5H} \boxtimes \operatorname{SiCl_4} + \operatorname{HSiCl} \\ \operatorname{Si_2Cl_5H} \boxtimes \operatorname{SiCl_3H} + \operatorname{SiCl_2} \\ \operatorname{Si_2Cl_5H} \boxtimes \operatorname{SiCl_4} + \operatorname{SiCl_2} \\ \operatorname{Si_2Cl_6} \boxtimes \operatorname{SiCl_4} + \operatorname{SiCl_2} \end{array}$

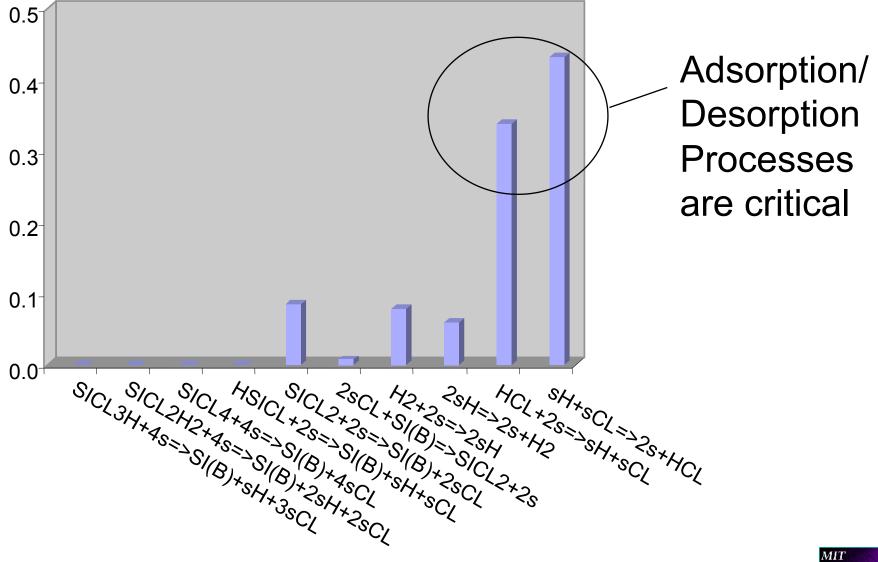
Operating Conditions

Reactor Pressure1 atmInlet Gas Temperature698 KSurface Temperature1173 KInlet Gas-Phase Velocity46.6 cm/sec

Surface Reactions

```
SiCl<sub>3</sub>H + 4s \Join Si(B) + sH + 3sCl
SiCl<sub>2</sub>H<sub>2</sub> + 4s \bowtie Si(B) + 2sH + 2sCl
SiCl<sub>4</sub> + 4s \bowtie Si(B) + 4sCl
HSiCl + 2s \bowtie Si(B) + sH + sCl
SiCl<sub>2</sub> + 2s \bowtie Si(B) + 2sCl
2sCl + Si(B) \bigstar SiCl<sub>2</sub> + 2s
H<sub>2</sub> + 2s \bowtie 2sH
2sH \bowtie 2s + H<sub>2</sub>
HCl + 2s \bowtie sH + sCl
sH + sCl \bowtie 2s + HCl
```


TCS Lower Wall Deposition Rate (ANOVA)



MIT Chemical Engineering

Research Opportunities in Uncertainty

- Uncertainty analysis is a fertile and much needed area for inter-disciplinary research
- There are many research opportunities
 - Database design for representation of uncertainties
 - New algorithms for uncertainty propagation
 - Decision making metrics in the presence of uncertainties
 - Treatment of structural uncertainties
 - Valuation of cost of "safety factors"
- Estimates of uncertainties in model inputs are desperately needed

SUCCESS WILL DEPEND ON:

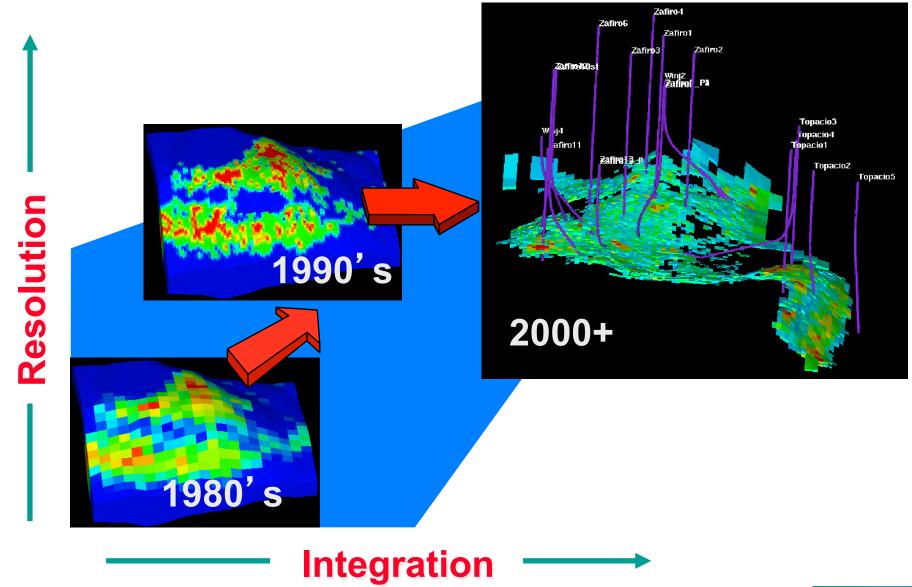
2. INTEGRATED APPROACHES FOR DATA MANAGEMENT, MODELING, SOLUTION, ANALYSIS AND VISUALIZATION

Opportunities in Computational Systems

- Data Modeling and Management
 - Data exchange standards
 - Enterprise integration
 - Risk management
 - Intellectual capital (e.g. corporate knowledge)
- Computing Environments
 - Interoperability of commercial systems
 - Collaborative environments
 - Uncertainty propagation
 - Sensor technology

- Visualization and Interpretation
 - Immersive data analysis

Role of Computing in Data Assimilation

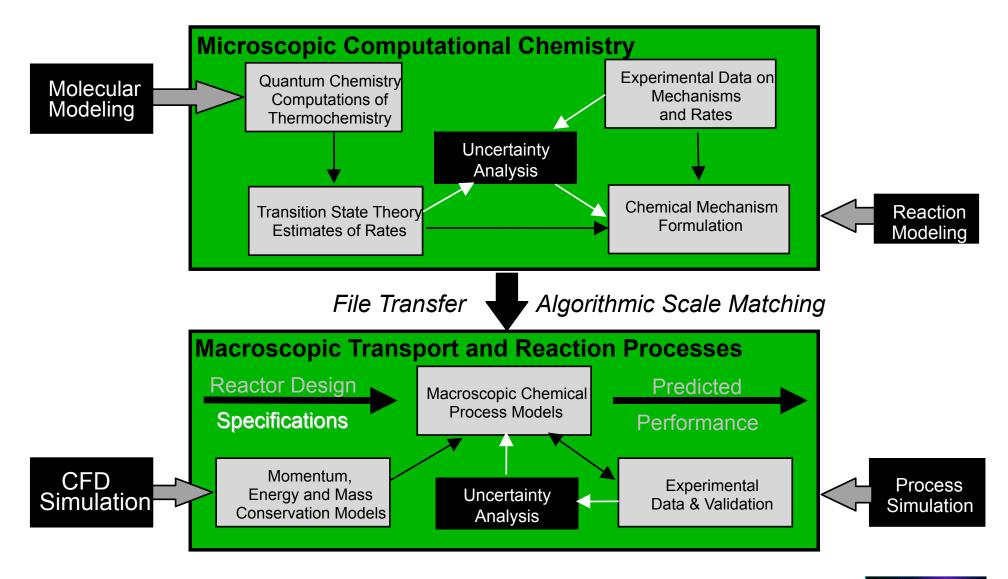


Visions for Software Architecture

A Computational System that is:

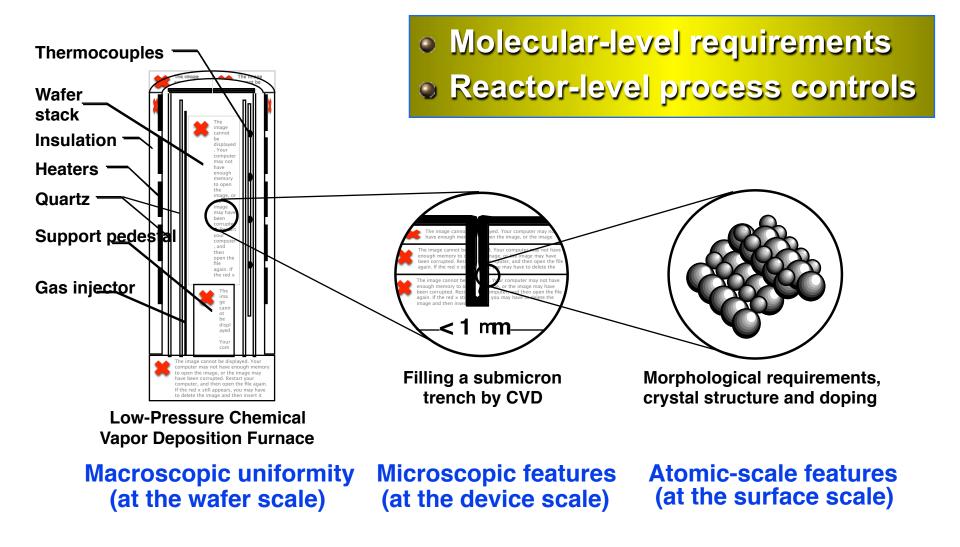
- An integrated web-based environment for chemical process modeling, control and optimization
- Able to <u>link</u> molecular, reactor and plant scale models for whole plant simulation
- Integration of corporate information repositories with experimental design

Chemical Engineer's Workbench



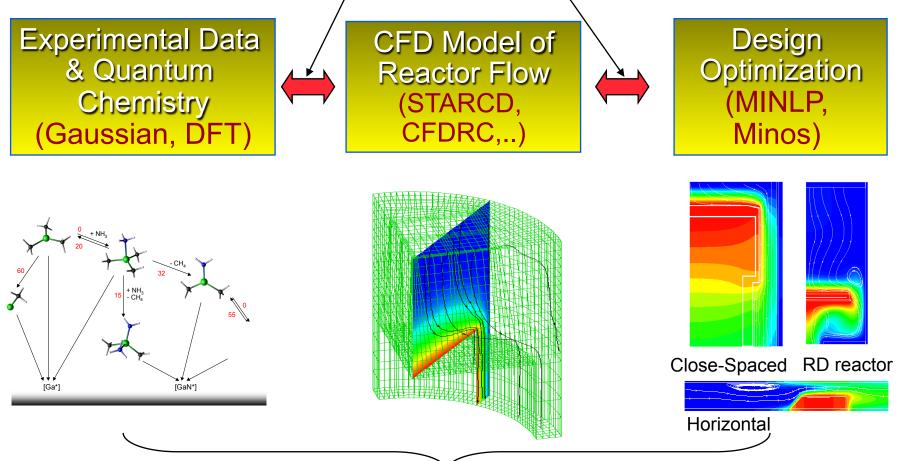
MIT Chemical Engineering

Need for Multi-scale Models and their Integration



Multi-Scale Integration of Software Systems

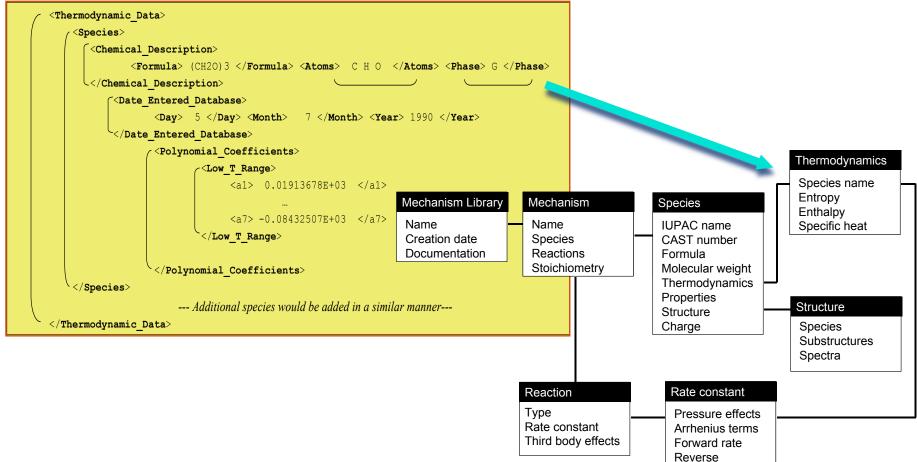
XML As a standard for data exchange



Distributed Computing Resources

Data Structures and XML Representations

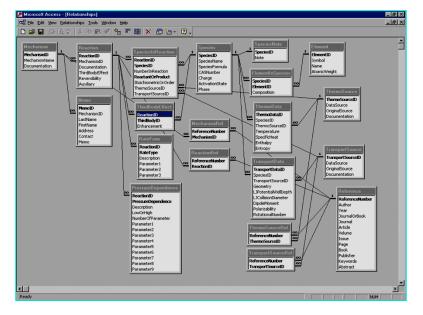
eXtended Markup Language (XML)



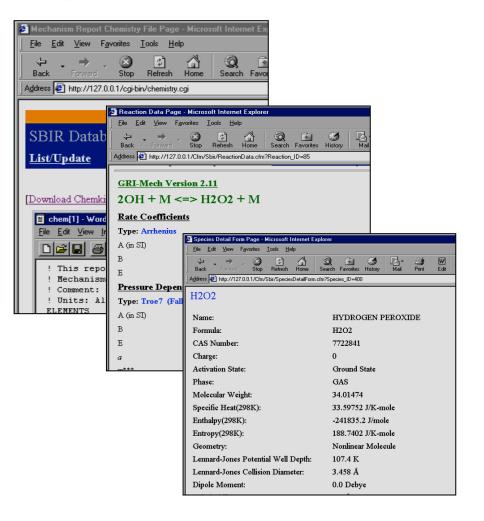
Data Structures

Reaction Mechanism Manager

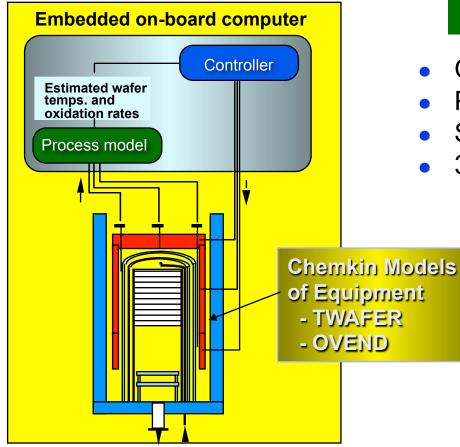
Data Base Structure



Sample Reports



Benefits of Model Based Process Controllers

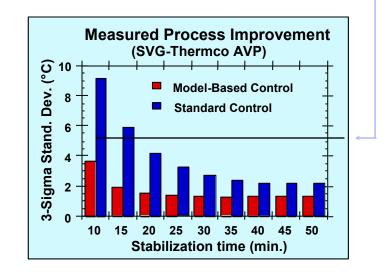


* Controller design and implementation by Relman, Inc.

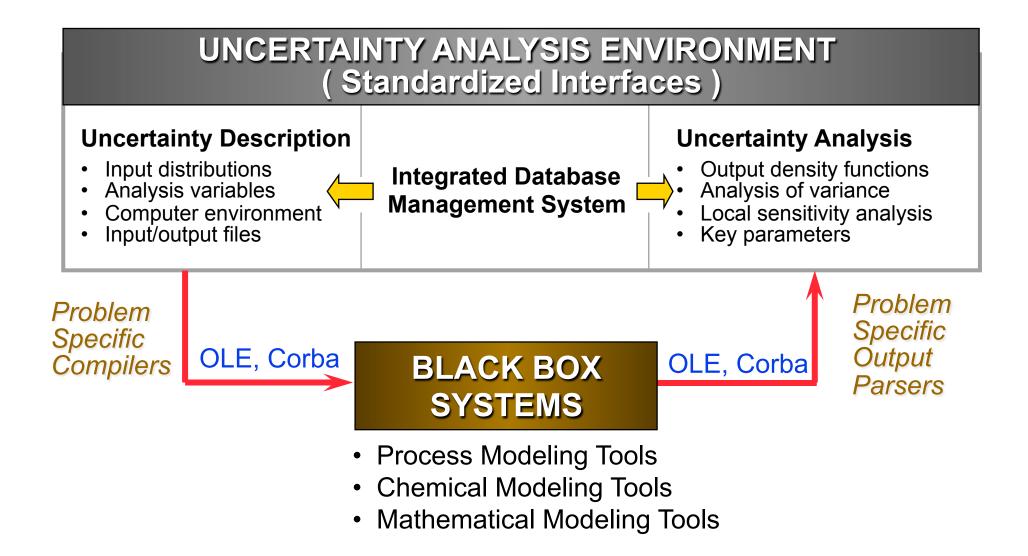
* Cray test and evaluation by SEMATECH

Economic Benefits

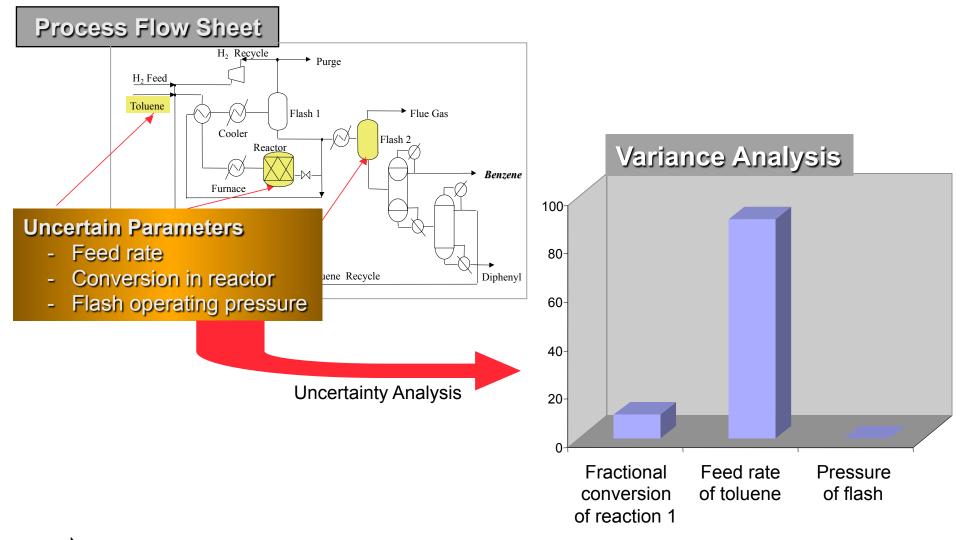
- Cost per deposition reduced by 25%
- Process cycle time cut by 20%.
- Stable operations 3 times faster
- 3s uniformity < 4% goal



Interacting with "Black Box" Models



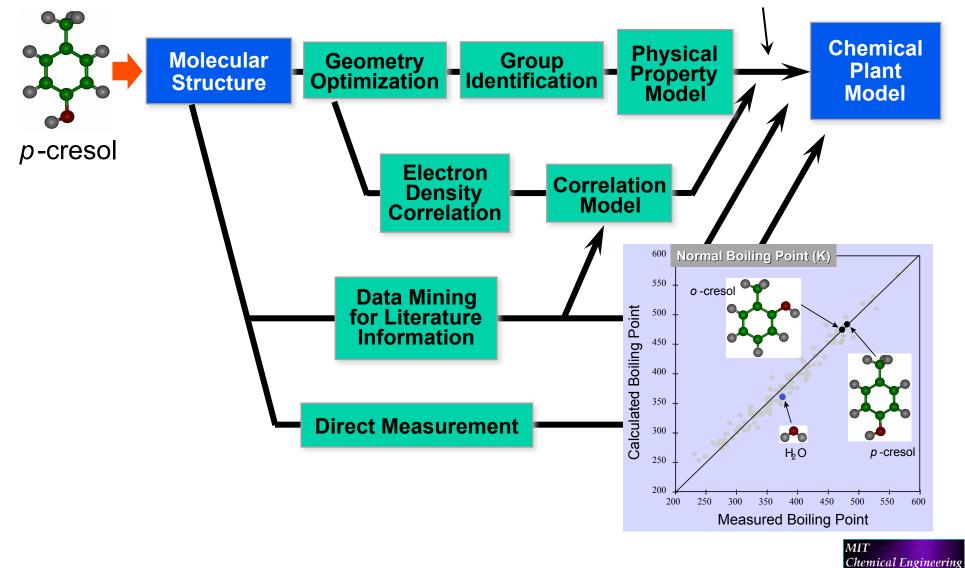
Example -- Aspen Process Simulation



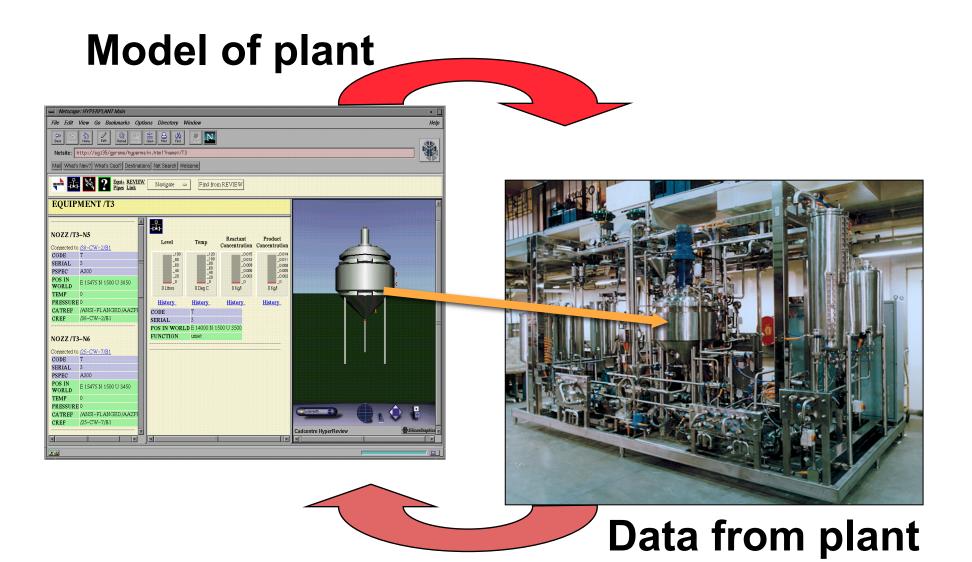
Identification of key parameters for further work

Hierarchical Information – *Physical Properties*

Alternative paths for producing the data needed for simulation



Environments to help Build Models



Virtual Plant Walkthrough

SGI, PSE, Adapco

Opportunities from Computational Systems

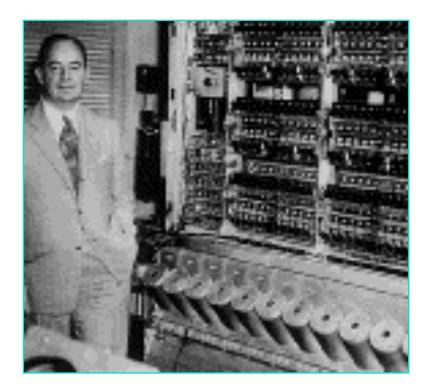
- Reducing the elapsed time for a "solution"
- Hierarchical / linked data bases
 - Community standards for data exchange
 - Corporate knowledge repositories
- Model based approaches to:
 - Experimental design and optimization
 - Process controllers
- Immersive data analysis and visualization for:
 - Data mining and analysis
 - Immersive graphical interfaces

Conclusions

"...While it is hard to predict the future, creating it is much easier..."

We have an exciting opportunity to shape an integrated approach to merging models and data

John von Neumann



Contributions

- Algorithms
- Software
- Hardware architecture
- Practical problems

B.S. Chemical Engineering ETH Zurich

